Browse code

pv: added SHA string transformations

- added sha256, sha384 and sha512 string transformations to return sha
over PV value

Irina Grigorescu authored on 14/03/2014 10:17:39 • lucian balanceanu committed on 14/03/2014 10:17:39
Showing 7 changed files
... ...
@@ -121,6 +121,39 @@ void compute_md5(char *dst, char *src, int src_len)
121 121
 	string2hex(digest, 16, dst);
122 122
 }
123 123
 
124
+/*! \brief Compute SHA256 checksum */
125
+void compute_sha256(char *dst, u_int8_t *src, int src_len)
126
+{
127
+	SHA256_CTX ctx256;
128
+	char buf[64];
129
+	SHA256_Init(&ctx256);
130
+	SHA256_Update(&ctx256, src, src_len);
131
+	SHA256_End(&ctx256, buf);
132
+	strncpy(dst, buf, 64);
133
+}
134
+
135
+/*! \brief Compute SHA384 checksum */
136
+void compute_sha384(char *dst, u_int8_t *src, int src_len)
137
+{
138
+	SHA384_CTX ctx384;
139
+	char buf[96];
140
+	SHA384_Init(&ctx384);
141
+	SHA384_Update(&ctx384, src, src_len);
142
+	SHA384_End(&ctx384, buf);
143
+	strncpy(dst, buf, 96);
144
+}
145
+
146
+/*! \brief Compute SHA512 checksum */
147
+void compute_sha512(char *dst, u_int8_t *src, int src_len)
148
+{
149
+	SHA512_CTX ctx512;
150
+	char buf[128];
151
+	SHA512_Init(&ctx512);
152
+	SHA512_Update(&ctx512, src, src_len);
153
+	SHA512_End(&ctx512, buf);
154
+	strncpy(dst, buf, 128);
155
+}
156
+
124 157
 /*! \brief Unscape all printable ASCII characters */
125 158
 int unescape_user(str *sin, str *sout)
126 159
 {
... ...
@@ -30,6 +30,7 @@
30 30
 
31 31
 #include "../../str.h"
32 32
 #include "../../md5.h"
33
+#include "../../sha256.h"
33 34
 
34 35
 /*
35 36
  * add backslashes to special characters
... ...
@@ -42,6 +43,12 @@ int unescape_common(char *dst, char *src, int src_len);
42 43
 
43 44
 void compute_md5(char *dst, char *src, int src_len);
44 45
 
46
+void compute_sha256(char *dst, u_int8_t *src, int src_len);
47
+
48
+void compute_sha384(char *dst, u_int8_t *src, int src_len);
49
+
50
+void compute_sha512(char *dst, u_int8_t *src, int src_len);
51
+
45 52
 int escape_user(str *sin, str *sout);
46 53
 
47 54
 int unescape_user(str *sin, str *sout);
... ...
@@ -47,6 +47,7 @@
47 47
 #include "../../parser/parse_nameaddr.h"
48 48
 
49 49
 #include "../../lib/kcore/strcommon.h"
50
+#include "../../sha2utils.h"
50 51
 #include "pv_trans.h"
51 52
 
52 53
 
... ...
@@ -235,6 +236,36 @@ int tr_eval_string(struct sip_msg *msg, tr_param_t *tp, int subtype,
235 236
 			val->rs.s = _tr_buffer;
236 237
 			val->rs.len = MD5_LEN;
237 238
 			break;
239
+		case TR_S_SHA256:
240
+			if(!(val->flags&PV_VAL_STR))
241
+				val->rs.s = int2str(val->ri, &val->rs.len);
242
+			compute_sha256(_tr_buffer, (u_int8_t*)val->rs.s, val->rs.len);
243
+			_tr_buffer[SHA256_LEN] = '\0';
244
+			val->flags = PV_VAL_STR;
245
+			val->ri = 0;
246
+			val->rs.s = _tr_buffer;
247
+			val->rs.len = SHA256_LEN;
248
+			break;
249
+		case TR_S_SHA384:
250
+			if(!(val->flags&PV_VAL_STR))
251
+				val->rs.s = int2str(val->ri, &val->rs.len);
252
+			compute_sha384(_tr_buffer, (u_int8_t*)val->rs.s, val->rs.len);
253
+			_tr_buffer[SHA384_LEN] = '\0';
254
+			val->flags = PV_VAL_STR;
255
+			val->ri = 0;
256
+			val->rs.s = _tr_buffer;
257
+			val->rs.len = SHA384_LEN;
258
+			break;
259
+		case TR_S_SHA512:
260
+			if(!(val->flags&PV_VAL_STR))
261
+				val->rs.s = int2str(val->ri, &val->rs.len);
262
+			compute_sha512(_tr_buffer, (u_int8_t*)val->rs.s, val->rs.len);
263
+			_tr_buffer[SHA512_LEN] = '\0';
264
+			val->flags = PV_VAL_STR;
265
+			val->ri = 0;
266
+			val->rs.s = _tr_buffer;
267
+			val->rs.len = SHA512_LEN;
268
+			break;
238 269
 		case TR_S_ENCODEHEXA:
239 270
 			if(!(val->flags&PV_VAL_STR))
240 271
 				val->rs.s = int2str(val->ri, &val->rs.len);
... ...
@@ -1908,6 +1939,15 @@ char* tr_parse_string(str* in, trans_t *t)
1908 1939
 	} else if(name.len==3 && strncasecmp(name.s, "md5", 3)==0) {
1909 1940
 		t->subtype = TR_S_MD5;
1910 1941
 		goto done;
1942
+	} else if(name.len==6 && strncasecmp(name.s, "sha256", 6)==0) {
1943
+		t->subtype = TR_S_SHA256;
1944
+		goto done;
1945
+	} else if(name.len==6 && strncasecmp(name.s, "sha384", 6)==0) {
1946
+		t->subtype = TR_S_SHA384;
1947
+		goto done;
1948
+	} else if(name.len==6 && strncasecmp(name.s, "sha512", 6)==0) {
1949
+		t->subtype = TR_S_SHA512;
1950
+		goto done;
1911 1951
 	} else if(name.len==7 && strncasecmp(name.s, "tolower", 7)==0) {
1912 1952
 		t->subtype = TR_S_TOLOWER;
1913 1953
 		goto done;
... ...
@@ -35,8 +35,8 @@
35 35
 enum _tr_type { TR_NONE=0, TR_STRING, TR_URI, TR_PARAMLIST, TR_NAMEADDR,
36 36
 				TR_TOBODY, TR_LINE };
37 37
 enum _tr_s_subtype { 
38
-	TR_S_NONE=0, TR_S_LEN, TR_S_INT, TR_S_MD5, TR_S_SUBSTR,
39
-	TR_S_SELECT, TR_S_ENCODEHEXA, TR_S_DECODEHEXA,
38
+	TR_S_NONE=0, TR_S_LEN, TR_S_INT, TR_S_MD5, TR_S_SHA256, TR_S_SHA384,
39
+	TR_S_SHA512, TR_S_SUBSTR, TR_S_SELECT, TR_S_ENCODEHEXA, TR_S_DECODEHEXA,
40 40
 	TR_S_ENCODEBASE64, TR_S_DECODEBASE64,
41 41
 	TR_S_ESCAPECOMMON, TR_S_UNESCAPECOMMON, TR_S_ESCAPEUSER, TR_S_UNESCAPEUSER,
42 42
 	TR_S_ESCAPEPARAM, TR_S_UNESCAPEPARAM, TR_S_TOLOWER, TR_S_TOUPPER,
43 43
new file mode 100644
... ...
@@ -0,0 +1,1064 @@
1
+/*
2
+ * FILE:	sha256.c
3
+ * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4
+ *
5
+ * Copyright (c) 2000-2001, Aaron D. Gifford
6
+ * All rights reserved.
7
+ *
8
+ * Redistribution and use in source and binary forms, with or without
9
+ * modification, are permitted provided that the following conditions
10
+ * are met:
11
+ * 1. Redistributions of source code must retain the above copyright
12
+ *    notice, this list of conditions and the following disclaimer.
13
+ * 2. Redistributions in binary form must reproduce the above copyright
14
+ *    notice, this list of conditions and the following disclaimer in the
15
+ *    documentation and/or other materials provided with the distribution.
16
+ * 3. Neither the name of the copyright holder nor the names of contributors
17
+ *    may be used to endorse or promote products derived from this software
18
+ *    without specific prior written permission.
19
+ *
20
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30
+ * SUCH DAMAGE.
31
+ *
32
+ * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
33
+ */
34
+
35
+#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
36
+#include <assert.h>	/* assert() */
37
+#include "sha256.h"
38
+
39
+/*
40
+ * ASSERT NOTE:
41
+ * Some sanity checking code is included using assert().  On my FreeBSD
42
+ * system, this additional code can be removed by compiling with NDEBUG
43
+ * defined.  Check your own systems manpage on assert() to see how to
44
+ * compile WITHOUT the sanity checking code on your system.
45
+ *
46
+ * UNROLLED TRANSFORM LOOP NOTE:
47
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
48
+ * loop version for the hash transform rounds (defined using macros
49
+ * later in this file).  Either define on the command line, for example:
50
+ *
51
+ *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
52
+ *
53
+ * or define below:
54
+ *
55
+ *   #define SHA2_UNROLL_TRANSFORM
56
+ *
57
+ */
58
+
59
+
60
+/*** SHA-256/384/512 Machine Architecture Definitions *****************/
61
+/*
62
+ * BYTE_ORDER NOTE:
63
+ *
64
+ * Please make sure that your system defines BYTE_ORDER.  If your
65
+ * architecture is little-endian, make sure it also defines
66
+ * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
67
+ * equivilent.
68
+ *
69
+ * If your system does not define the above, then you can do so by
70
+ * hand like this:
71
+ *
72
+ *   #define LITTLE_ENDIAN 1234
73
+ *   #define BIG_ENDIAN    4321
74
+ *
75
+ * And for little-endian machines, add:
76
+ *
77
+ *   #define BYTE_ORDER LITTLE_ENDIAN
78
+ *
79
+ * Or for big-endian machines:
80
+ *
81
+ *   #define BYTE_ORDER BIG_ENDIAN
82
+ *
83
+ * The FreeBSD machine this was written on defines BYTE_ORDER
84
+ * appropriately by including <sys/types.h> (which in turn includes
85
+ * <machine/endian.h> where the appropriate definitions are actually
86
+ * made).
87
+ */
88
+#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
89
+#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
90
+#endif
91
+
92
+/*
93
+ * Define the followingsha2_* types to types of the correct length on
94
+ * the native archtecture.   Most BSD systems and Linux define u_intXX_t
95
+ * types.  Machines with very recent ANSI C headers, can use the
96
+ * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
97
+ * during compile or in the sha.h header file.
98
+ *
99
+ * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
100
+ * will need to define these three typedefs below (and the appropriate
101
+ * ones in sha.h too) by hand according to their system architecture.
102
+ *
103
+ * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
104
+ * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
105
+ */
106
+#ifdef SHA2_USE_INTTYPES_H
107
+
108
+typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
109
+typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
110
+typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
111
+
112
+#else /* SHA2_USE_INTTYPES_H */
113
+
114
+typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
115
+typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
116
+typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
117
+
118
+#endif /* SHA2_USE_INTTYPES_H */
119
+
120
+
121
+/*** SHA-256/384/512 Various Length Definitions ***********************/
122
+/* NOTE: Most of these are in sha2.h */
123
+#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
124
+#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
125
+#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
126
+
127
+
128
+/*** ENDIAN REVERSAL MACROS *******************************************/
129
+#if BYTE_ORDER == LITTLE_ENDIAN
130
+#define REVERSE32(w,x)	{ \
131
+	sha2_word32 tmp = (w); \
132
+	tmp = (tmp >> 16) | (tmp << 16); \
133
+	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
134
+}
135
+#define REVERSE64(w,x)	{ \
136
+	sha2_word64 tmp = (w); \
137
+	tmp = (tmp >> 32) | (tmp << 32); \
138
+	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
139
+	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
140
+	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
141
+	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
142
+}
143
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
144
+
145
+/*
146
+ * Macro for incrementally adding the unsigned 64-bit integer n to the
147
+ * unsigned 128-bit integer (represented using a two-element array of
148
+ * 64-bit words):
149
+ */
150
+#define ADDINC128(w,n)	{ \
151
+	(w)[0] += (sha2_word64)(n); \
152
+	if ((w)[0] < (n)) { \
153
+		(w)[1]++; \
154
+	} \
155
+}
156
+
157
+/*
158
+ * Macros for copying blocks of memory and for zeroing out ranges
159
+ * of memory.  Using these macros makes it easy to switch from
160
+ * using memset()/memcpy() and using bzero()/bcopy().
161
+ *
162
+ * Please define either SHA2_USE_MEMSET_MEMCPY or define
163
+ * SHA2_USE_BZERO_BCOPY depending on which function set you
164
+ * choose to use:
165
+ */
166
+#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
167
+/* Default to memset()/memcpy() if no option is specified */
168
+#define	SHA2_USE_MEMSET_MEMCPY	1
169
+#endif
170
+#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
171
+/* Abort with an error if BOTH options are defined */
172
+#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
173
+#endif
174
+
175
+#ifdef SHA2_USE_MEMSET_MEMCPY
176
+#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
177
+#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
178
+#endif
179
+#ifdef SHA2_USE_BZERO_BCOPY
180
+#define MEMSET_BZERO(p,l)	bzero((p), (l))
181
+#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
182
+#endif
183
+
184
+
185
+/*** THE SIX LOGICAL FUNCTIONS ****************************************/
186
+/*
187
+ * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
188
+ *
189
+ *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
190
+ *   S is a ROTATION) because the SHA-256/384/512 description document
191
+ *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
192
+ *   same "backwards" definition.
193
+ */
194
+/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
195
+#define R(b,x) 		((x) >> (b))
196
+/* 32-bit Rotate-right (used in SHA-256): */
197
+#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
198
+/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
199
+#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
200
+
201
+/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
202
+#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
203
+#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
204
+
205
+/* Four of six logical functions used in SHA-256: */
206
+#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
207
+#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
208
+#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
209
+#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
210
+
211
+/* Four of six logical functions used in SHA-384 and SHA-512: */
212
+#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
213
+#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
214
+#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
215
+#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
216
+
217
+/*** INTERNAL FUNCTION PROTOTYPES *************************************/
218
+/* NOTE: These should not be accessed directly from outside this
219
+ * library -- they are intended for private internal visibility/use
220
+ * only.
221
+ */
222
+void SHA512_Last(SHA512_CTX*);
223
+void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
224
+void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
225
+
226
+
227
+/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228
+/* Hash constant words K for SHA-256: */
229
+const static sha2_word32 K256[64] = {
230
+	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
231
+	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
232
+	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
233
+	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
234
+	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
235
+	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
236
+	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
237
+	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
238
+	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
239
+	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
240
+	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
241
+	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
242
+	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
243
+	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
244
+	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
245
+	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
246
+};
247
+
248
+/* Initial hash value H for SHA-256: */
249
+const static sha2_word32 sha256_initial_hash_value[8] = {
250
+	0x6a09e667UL,
251
+	0xbb67ae85UL,
252
+	0x3c6ef372UL,
253
+	0xa54ff53aUL,
254
+	0x510e527fUL,
255
+	0x9b05688cUL,
256
+	0x1f83d9abUL,
257
+	0x5be0cd19UL
258
+};
259
+
260
+/* Hash constant words K for SHA-384 and SHA-512: */
261
+const static sha2_word64 K512[80] = {
262
+	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
263
+	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
264
+	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
265
+	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
266
+	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
267
+	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
268
+	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
269
+	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
270
+	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
271
+	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
272
+	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
273
+	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
274
+	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
275
+	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
276
+	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
277
+	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
278
+	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
279
+	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
280
+	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
281
+	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
282
+	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
283
+	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
284
+	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
285
+	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
286
+	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
287
+	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
288
+	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
289
+	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
290
+	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
291
+	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
292
+	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
293
+	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
294
+	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
295
+	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
296
+	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
297
+	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
298
+	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
299
+	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
300
+	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
301
+	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
302
+};
303
+
304
+/* Initial hash value H for SHA-384 */
305
+const static sha2_word64 sha384_initial_hash_value[8] = {
306
+	0xcbbb9d5dc1059ed8ULL,
307
+	0x629a292a367cd507ULL,
308
+	0x9159015a3070dd17ULL,
309
+	0x152fecd8f70e5939ULL,
310
+	0x67332667ffc00b31ULL,
311
+	0x8eb44a8768581511ULL,
312
+	0xdb0c2e0d64f98fa7ULL,
313
+	0x47b5481dbefa4fa4ULL
314
+};
315
+
316
+/* Initial hash value H for SHA-512 */
317
+const static sha2_word64 sha512_initial_hash_value[8] = {
318
+	0x6a09e667f3bcc908ULL,
319
+	0xbb67ae8584caa73bULL,
320
+	0x3c6ef372fe94f82bULL,
321
+	0xa54ff53a5f1d36f1ULL,
322
+	0x510e527fade682d1ULL,
323
+	0x9b05688c2b3e6c1fULL,
324
+	0x1f83d9abfb41bd6bULL,
325
+	0x5be0cd19137e2179ULL
326
+};
327
+
328
+/*
329
+ * Constant used by SHA256/384/512_End() functions for converting the
330
+ * digest to a readable hexadecimal character string:
331
+ */
332
+static const char *sha2_hex_digits = "0123456789abcdef";
333
+
334
+
335
+/*** SHA-256: *********************************************************/
336
+void SHA256_Init(SHA256_CTX* context) {
337
+	if (context == (SHA256_CTX*)0) {
338
+		return;
339
+	}
340
+	MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
341
+	MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
342
+	context->bitcount = 0;
343
+}
344
+
345
+#ifdef SHA2_UNROLL_TRANSFORM
346
+
347
+/* Unrolled SHA-256 round macros: */
348
+
349
+#if BYTE_ORDER == LITTLE_ENDIAN
350
+
351
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
352
+	REVERSE32(*data++, W256[j]); \
353
+	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
354
+             K256[j] + W256[j]; \
355
+	(d) += T1; \
356
+	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
357
+	j++
358
+
359
+
360
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
361
+
362
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
363
+	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364
+	     K256[j] + (W256[j] = *data++); \
365
+	(d) += T1; \
366
+	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367
+	j++
368
+
369
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
370
+
371
+#define ROUND256(a,b,c,d,e,f,g,h)	\
372
+	s0 = W256[(j+1)&0x0f]; \
373
+	s0 = sigma0_256(s0); \
374
+	s1 = W256[(j+14)&0x0f]; \
375
+	s1 = sigma1_256(s1); \
376
+	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
377
+	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
378
+	(d) += T1; \
379
+	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
380
+	j++
381
+
382
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
383
+	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
384
+	sha2_word32	T1, *W256;
385
+	int		j;
386
+
387
+	W256 = (sha2_word32*)context->buffer;
388
+
389
+	/* Initialize registers with the prev. intermediate value */
390
+	a = context->state[0];
391
+	b = context->state[1];
392
+	c = context->state[2];
393
+	d = context->state[3];
394
+	e = context->state[4];
395
+	f = context->state[5];
396
+	g = context->state[6];
397
+	h = context->state[7];
398
+
399
+	j = 0;
400
+	do {
401
+		/* Rounds 0 to 15 (unrolled): */
402
+		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
403
+		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
404
+		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
405
+		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
406
+		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
407
+		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
408
+		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
409
+		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
410
+	} while (j < 16);
411
+
412
+	/* Now for the remaining rounds to 64: */
413
+	do {
414
+		ROUND256(a,b,c,d,e,f,g,h);
415
+		ROUND256(h,a,b,c,d,e,f,g);
416
+		ROUND256(g,h,a,b,c,d,e,f);
417
+		ROUND256(f,g,h,a,b,c,d,e);
418
+		ROUND256(e,f,g,h,a,b,c,d);
419
+		ROUND256(d,e,f,g,h,a,b,c);
420
+		ROUND256(c,d,e,f,g,h,a,b);
421
+		ROUND256(b,c,d,e,f,g,h,a);
422
+	} while (j < 64);
423
+
424
+	/* Compute the current intermediate hash value */
425
+	context->state[0] += a;
426
+	context->state[1] += b;
427
+	context->state[2] += c;
428
+	context->state[3] += d;
429
+	context->state[4] += e;
430
+	context->state[5] += f;
431
+	context->state[6] += g;
432
+	context->state[7] += h;
433
+
434
+	/* Clean up */
435
+	a = b = c = d = e = f = g = h = T1 = 0;
436
+}
437
+
438
+#else /* SHA2_UNROLL_TRANSFORM */
439
+
440
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
441
+	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
442
+	sha2_word32	T1, T2, *W256;
443
+	int		j;
444
+
445
+	W256 = (sha2_word32*)context->buffer;
446
+
447
+	/* Initialize registers with the prev. intermediate value */
448
+	a = context->state[0];
449
+	b = context->state[1];
450
+	c = context->state[2];
451
+	d = context->state[3];
452
+	e = context->state[4];
453
+	f = context->state[5];
454
+	g = context->state[6];
455
+	h = context->state[7];
456
+
457
+	j = 0;
458
+	do {
459
+#if BYTE_ORDER == LITTLE_ENDIAN
460
+		/* Copy data while converting to host byte order */
461
+		REVERSE32(*data++,W256[j]);
462
+		/* Apply the SHA-256 compression function to update a..h */
463
+		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
464
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
465
+		/* Apply the SHA-256 compression function to update a..h with copy */
466
+		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
467
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
468
+		T2 = Sigma0_256(a) + Maj(a, b, c);
469
+		h = g;
470
+		g = f;
471
+		f = e;
472
+		e = d + T1;
473
+		d = c;
474
+		c = b;
475
+		b = a;
476
+		a = T1 + T2;
477
+
478
+		j++;
479
+	} while (j < 16);
480
+
481
+	do {
482
+		/* Part of the message block expansion: */
483
+		s0 = W256[(j+1)&0x0f];
484
+		s0 = sigma0_256(s0);
485
+		s1 = W256[(j+14)&0x0f];
486
+		s1 = sigma1_256(s1);
487
+
488
+		/* Apply the SHA-256 compression function to update a..h */
489
+		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
490
+		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
491
+		T2 = Sigma0_256(a) + Maj(a, b, c);
492
+		h = g;
493
+		g = f;
494
+		f = e;
495
+		e = d + T1;
496
+		d = c;
497
+		c = b;
498
+		b = a;
499
+		a = T1 + T2;
500
+
501
+		j++;
502
+	} while (j < 64);
503
+
504
+	/* Compute the current intermediate hash value */
505
+	context->state[0] += a;
506
+	context->state[1] += b;
507
+	context->state[2] += c;
508
+	context->state[3] += d;
509
+	context->state[4] += e;
510
+	context->state[5] += f;
511
+	context->state[6] += g;
512
+	context->state[7] += h;
513
+
514
+	/* Clean up */
515
+	a = b = c = d = e = f = g = h = T1 = T2 = 0;
516
+}
517
+
518
+#endif /* SHA2_UNROLL_TRANSFORM */
519
+
520
+void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
521
+	unsigned int	freespace, usedspace;
522
+
523
+	if (len == 0) {
524
+		/* Calling with no data is valid - we do nothing */
525
+		return;
526
+	}
527
+
528
+	/* Sanity check: */
529
+	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
530
+
531
+	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
532
+	if (usedspace > 0) {
533
+		/* Calculate how much free space is available in the buffer */
534
+		freespace = SHA256_BLOCK_LENGTH - usedspace;
535
+
536
+		if (len >= freespace) {
537
+			/* Fill the buffer completely and process it */
538
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
539
+			context->bitcount += freespace << 3;
540
+			len -= freespace;
541
+			data += freespace;
542
+			SHA256_Transform(context, (sha2_word32*)context->buffer);
543
+		} else {
544
+			/* The buffer is not yet full */
545
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
546
+			context->bitcount += len << 3;
547
+			/* Clean up: */
548
+			usedspace = freespace = 0;
549
+			return;
550
+		}
551
+	}
552
+	while (len >= SHA256_BLOCK_LENGTH) {
553
+		/* Process as many complete blocks as we can */
554
+		SHA256_Transform(context, (sha2_word32*)data);
555
+		context->bitcount += SHA256_BLOCK_LENGTH << 3;
556
+		len -= SHA256_BLOCK_LENGTH;
557
+		data += SHA256_BLOCK_LENGTH;
558
+	}
559
+	if (len > 0) {
560
+		/* There's left-overs, so save 'em */
561
+		MEMCPY_BCOPY(context->buffer, data, len);
562
+		context->bitcount += len << 3;
563
+	}
564
+	/* Clean up: */
565
+	usedspace = freespace = 0;
566
+}
567
+
568
+void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
569
+	sha2_word32	*d = (sha2_word32*)digest;
570
+	unsigned int	usedspace;
571
+
572
+	/* Sanity check: */
573
+	assert(context != (SHA256_CTX*)0);
574
+
575
+	/* If no digest buffer is passed, we don't bother doing this: */
576
+	if (digest != (sha2_byte*)0) {
577
+		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
578
+#if BYTE_ORDER == LITTLE_ENDIAN
579
+		/* Convert FROM host byte order */
580
+		REVERSE64(context->bitcount,context->bitcount);
581
+#endif
582
+		if (usedspace > 0) {
583
+			/* Begin padding with a 1 bit: */
584
+			context->buffer[usedspace++] = 0x80;
585
+
586
+			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
587
+				/* Set-up for the last transform: */
588
+				MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
589
+			} else {
590
+				if (usedspace < SHA256_BLOCK_LENGTH) {
591
+					MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
592
+				}
593
+				/* Do second-to-last transform: */
594
+				SHA256_Transform(context, (sha2_word32*)context->buffer);
595
+
596
+				/* And set-up for the last transform: */
597
+				MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
598
+			}
599
+		} else {
600
+			/* Set-up for the last transform: */
601
+			MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
602
+
603
+			/* Begin padding with a 1 bit: */
604
+			*context->buffer = 0x80;
605
+		}
606
+		/* Set the bit count: */
607
+		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
608
+
609
+		/* Final transform: */
610
+		SHA256_Transform(context, (sha2_word32*)context->buffer);
611
+
612
+#if BYTE_ORDER == LITTLE_ENDIAN
613
+		{
614
+			/* Convert TO host byte order */
615
+			int	j;
616
+			for (j = 0; j < 8; j++) {
617
+				REVERSE32(context->state[j],context->state[j]);
618
+				*d++ = context->state[j];
619
+			}
620
+		}
621
+#else
622
+		MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
623
+#endif
624
+	}
625
+
626
+	/* Clean up state data: */
627
+	MEMSET_BZERO(context, sizeof(context));
628
+	usedspace = 0;
629
+}
630
+
631
+char *SHA256_End(SHA256_CTX* context, char buffer[]) {
632
+	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
633
+	int		i;
634
+
635
+	/* Sanity check: */
636
+	assert(context != (SHA256_CTX*)0);
637
+
638
+	if (buffer != (char*)0) {
639
+		SHA256_Final(digest, context);
640
+
641
+		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
642
+			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
643
+			*buffer++ = sha2_hex_digits[*d & 0x0f];
644
+			d++;
645
+		}
646
+		*buffer = (char)0;
647
+	} else {
648
+		MEMSET_BZERO(context, sizeof(context));
649
+	}
650
+	MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
651
+	return buffer;
652
+}
653
+
654
+char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
655
+	SHA256_CTX	context;
656
+
657
+	SHA256_Init(&context);
658
+	SHA256_Update(&context, data, len);
659
+	return SHA256_End(&context, digest);
660
+}
661
+
662
+
663
+/*** SHA-512: *********************************************************/
664
+void SHA512_Init(SHA512_CTX* context) {
665
+	if (context == (SHA512_CTX*)0) {
666
+		return;
667
+	}
668
+	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
669
+	MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
670
+	context->bitcount[0] = context->bitcount[1] =  0;
671
+}
672
+
673
+#ifdef SHA2_UNROLL_TRANSFORM
674
+
675
+/* Unrolled SHA-512 round macros: */
676
+#if BYTE_ORDER == LITTLE_ENDIAN
677
+
678
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
679
+	REVERSE64(*data++, W512[j]); \
680
+	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
681
+             K512[j] + W512[j]; \
682
+	(d) += T1, \
683
+	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
684
+	j++
685
+
686
+
687
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
688
+
689
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
690
+	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
691
+             K512[j] + (W512[j] = *data++); \
692
+	(d) += T1; \
693
+	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
694
+	j++
695
+
696
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
697
+
698
+#define ROUND512(a,b,c,d,e,f,g,h)	\
699
+	s0 = W512[(j+1)&0x0f]; \
700
+	s0 = sigma0_512(s0); \
701
+	s1 = W512[(j+14)&0x0f]; \
702
+	s1 = sigma1_512(s1); \
703
+	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
704
+             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
705
+	(d) += T1; \
706
+	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
707
+	j++
708
+
709
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
710
+	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
711
+	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
712
+	int		j;
713
+
714
+	/* Initialize registers with the prev. intermediate value */
715
+	a = context->state[0];
716
+	b = context->state[1];
717
+	c = context->state[2];
718
+	d = context->state[3];
719
+	e = context->state[4];
720
+	f = context->state[5];
721
+	g = context->state[6];
722
+	h = context->state[7];
723
+
724
+	j = 0;
725
+	do {
726
+		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
727
+		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
728
+		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
729
+		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
730
+		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
731
+		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
732
+		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
733
+		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
734
+	} while (j < 16);
735
+
736
+	/* Now for the remaining rounds up to 79: */
737
+	do {
738
+		ROUND512(a,b,c,d,e,f,g,h);
739
+		ROUND512(h,a,b,c,d,e,f,g);
740
+		ROUND512(g,h,a,b,c,d,e,f);
741
+		ROUND512(f,g,h,a,b,c,d,e);
742
+		ROUND512(e,f,g,h,a,b,c,d);
743
+		ROUND512(d,e,f,g,h,a,b,c);
744
+		ROUND512(c,d,e,f,g,h,a,b);
745
+		ROUND512(b,c,d,e,f,g,h,a);
746
+	} while (j < 80);
747
+
748
+	/* Compute the current intermediate hash value */
749
+	context->state[0] += a;
750
+	context->state[1] += b;
751
+	context->state[2] += c;
752
+	context->state[3] += d;
753
+	context->state[4] += e;
754
+	context->state[5] += f;
755
+	context->state[6] += g;
756
+	context->state[7] += h;
757
+
758
+	/* Clean up */
759
+	a = b = c = d = e = f = g = h = T1 = 0;
760
+}
761
+
762
+#else /* SHA2_UNROLL_TRANSFORM */
763
+
764
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
765
+	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
766
+	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
767
+	int		j;
768
+
769
+	/* Initialize registers with the prev. intermediate value */
770
+	a = context->state[0];
771
+	b = context->state[1];
772
+	c = context->state[2];
773
+	d = context->state[3];
774
+	e = context->state[4];
775
+	f = context->state[5];
776
+	g = context->state[6];
777
+	h = context->state[7];
778
+
779
+	j = 0;
780
+	do {
781
+#if BYTE_ORDER == LITTLE_ENDIAN
782
+		/* Convert TO host byte order */
783
+		REVERSE64(*data++, W512[j]);
784
+		/* Apply the SHA-512 compression function to update a..h */
785
+		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
786
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
787
+		/* Apply the SHA-512 compression function to update a..h with copy */
788
+		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
789
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
790
+		T2 = Sigma0_512(a) + Maj(a, b, c);
791
+		h = g;
792
+		g = f;
793
+		f = e;
794
+		e = d + T1;
795
+		d = c;
796
+		c = b;
797
+		b = a;
798
+		a = T1 + T2;
799
+
800
+		j++;
801
+	} while (j < 16);
802
+
803
+	do {
804
+		/* Part of the message block expansion: */
805
+		s0 = W512[(j+1)&0x0f];
806
+		s0 = sigma0_512(s0);
807
+		s1 = W512[(j+14)&0x0f];
808
+		s1 =  sigma1_512(s1);
809
+
810
+		/* Apply the SHA-512 compression function to update a..h */
811
+		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
812
+		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
813
+		T2 = Sigma0_512(a) + Maj(a, b, c);
814
+		h = g;
815
+		g = f;
816
+		f = e;
817
+		e = d + T1;
818
+		d = c;
819
+		c = b;
820
+		b = a;
821
+		a = T1 + T2;
822
+
823
+		j++;
824
+	} while (j < 80);
825
+
826
+	/* Compute the current intermediate hash value */
827
+	context->state[0] += a;
828
+	context->state[1] += b;
829
+	context->state[2] += c;
830
+	context->state[3] += d;
831
+	context->state[4] += e;
832
+	context->state[5] += f;
833
+	context->state[6] += g;
834
+	context->state[7] += h;
835
+
836
+	/* Clean up */
837
+	a = b = c = d = e = f = g = h = T1 = T2 = 0;
838
+}
839
+
840
+#endif /* SHA2_UNROLL_TRANSFORM */
841
+
842
+void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
843
+	unsigned int	freespace, usedspace;
844
+
845
+	if (len == 0) {
846
+		/* Calling with no data is valid - we do nothing */
847
+		return;
848
+	}
849
+
850
+	/* Sanity check: */
851
+	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
852
+
853
+	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
854
+	if (usedspace > 0) {
855
+		/* Calculate how much free space is available in the buffer */
856
+		freespace = SHA512_BLOCK_LENGTH - usedspace;
857
+
858
+		if (len >= freespace) {
859
+			/* Fill the buffer completely and process it */
860
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
861
+			ADDINC128(context->bitcount, freespace << 3);
862
+			len -= freespace;
863
+			data += freespace;
864
+			SHA512_Transform(context, (sha2_word64*)context->buffer);
865
+		} else {
866
+			/* The buffer is not yet full */
867
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
868
+			ADDINC128(context->bitcount, len << 3);
869
+			/* Clean up: */
870
+			usedspace = freespace = 0;
871
+			return;
872
+		}
873
+	}
874
+	while (len >= SHA512_BLOCK_LENGTH) {
875
+		/* Process as many complete blocks as we can */
876
+		SHA512_Transform(context, (sha2_word64*)data);
877
+		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
878
+		len -= SHA512_BLOCK_LENGTH;
879
+		data += SHA512_BLOCK_LENGTH;
880
+	}
881
+	if (len > 0) {
882
+		/* There's left-overs, so save 'em */
883
+		MEMCPY_BCOPY(context->buffer, data, len);
884
+		ADDINC128(context->bitcount, len << 3);
885
+	}
886
+	/* Clean up: */
887
+	usedspace = freespace = 0;
888
+}
889
+
890
+void SHA512_Last(SHA512_CTX* context) {
891
+	unsigned int	usedspace;
892
+
893
+	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
894
+#if BYTE_ORDER == LITTLE_ENDIAN
895
+	/* Convert FROM host byte order */
896
+	REVERSE64(context->bitcount[0],context->bitcount[0]);
897
+	REVERSE64(context->bitcount[1],context->bitcount[1]);
898
+#endif
899
+	if (usedspace > 0) {
900
+		/* Begin padding with a 1 bit: */
901
+		context->buffer[usedspace++] = 0x80;
902
+
903
+		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
904
+			/* Set-up for the last transform: */
905
+			MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
906
+		} else {
907
+			if (usedspace < SHA512_BLOCK_LENGTH) {
908
+				MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
909
+			}
910
+			/* Do second-to-last transform: */
911
+			SHA512_Transform(context, (sha2_word64*)context->buffer);
912
+
913
+			/* And set-up for the last transform: */
914
+			MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
915
+		}
916
+	} else {
917
+		/* Prepare for final transform: */
918
+		MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
919
+
920
+		/* Begin padding with a 1 bit: */
921
+		*context->buffer = 0x80;
922
+	}
923
+	/* Store the length of input data (in bits): */
924
+	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
925
+	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
926
+
927
+	/* Final transform: */
928
+	SHA512_Transform(context, (sha2_word64*)context->buffer);
929
+}
930
+
931
+void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
932
+	sha2_word64	*d = (sha2_word64*)digest;
933
+
934
+	/* Sanity check: */
935
+	assert(context != (SHA512_CTX*)0);
936
+
937
+	/* If no digest buffer is passed, we don't bother doing this: */
938
+	if (digest != (sha2_byte*)0) {
939
+		SHA512_Last(context);
940
+
941
+		/* Save the hash data for output: */
942
+#if BYTE_ORDER == LITTLE_ENDIAN
943
+		{
944
+			/* Convert TO host byte order */
945
+			int	j;
946
+			for (j = 0; j < 8; j++) {
947
+				REVERSE64(context->state[j],context->state[j]);
948
+				*d++ = context->state[j];
949
+			}
950
+		}
951
+#else
952
+		MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
953
+#endif
954
+	}
955
+
956
+	/* Zero out state data */
957
+	MEMSET_BZERO(context, sizeof(context));
958
+}
959
+
960
+char *SHA512_End(SHA512_CTX* context, char buffer[]) {
961
+	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
962
+	int		i;
963
+
964
+	/* Sanity check: */
965
+	assert(context != (SHA512_CTX*)0);
966
+
967
+	if (buffer != (char*)0) {
968
+		SHA512_Final(digest, context);
969
+
970
+		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
971
+			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
972
+			*buffer++ = sha2_hex_digits[*d & 0x0f];
973
+			d++;
974
+		}
975
+		*buffer = (char)0;
976
+	} else {
977
+		MEMSET_BZERO(context, sizeof(context));
978
+	}
979
+	MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
980
+	return buffer;
981
+}
982
+
983
+char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
984
+	SHA512_CTX	context;
985
+
986
+	SHA512_Init(&context);
987
+	SHA512_Update(&context, data, len);
988
+	return SHA512_End(&context, digest);
989
+}
990
+
991
+
992
+/*** SHA-384: *********************************************************/
993
+void SHA384_Init(SHA384_CTX* context) {
994
+	if (context == (SHA384_CTX*)0) {
995
+		return;
996
+	}
997
+	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
998
+	MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
999
+	context->bitcount[0] = context->bitcount[1] = 0;
1000
+}
1001
+
1002
+void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1003
+	SHA512_Update((SHA512_CTX*)context, data, len);
1004
+}
1005
+
1006
+void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1007
+	sha2_word64	*d = (sha2_word64*)digest;
1008
+
1009
+	/* Sanity check: */
1010
+	assert(context != (SHA384_CTX*)0);
1011
+
1012
+	/* If no digest buffer is passed, we don't bother doing this: */
1013
+	if (digest != (sha2_byte*)0) {
1014
+		SHA512_Last((SHA512_CTX*)context);
1015
+
1016
+		/* Save the hash data for output: */
1017
+#if BYTE_ORDER == LITTLE_ENDIAN
1018
+		{
1019
+			/* Convert TO host byte order */
1020
+			int	j;
1021
+			for (j = 0; j < 6; j++) {
1022
+				REVERSE64(context->state[j],context->state[j]);
1023
+				*d++ = context->state[j];
1024
+			}
1025
+		}
1026
+#else
1027
+		MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
1028
+#endif
1029
+	}
1030
+
1031
+	/* Zero out state data */
1032
+	MEMSET_BZERO(context, sizeof(context));
1033
+}
1034
+
1035
+char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1036
+	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1037
+	int		i;
1038
+
1039
+	/* Sanity check: */
1040
+	assert(context != (SHA384_CTX*)0);
1041
+
1042
+	if (buffer != (char*)0) {
1043
+		SHA384_Final(digest, context);
1044
+
1045
+		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1046
+			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1047
+			*buffer++ = sha2_hex_digits[*d & 0x0f];
1048
+			d++;
1049
+		}
1050
+		*buffer = (char)0;
1051
+	} else {
1052
+		MEMSET_BZERO(context, sizeof(context));
1053
+	}
1054
+	MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
1055
+	return buffer;
1056
+}
1057
+
1058
+char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1059
+	SHA384_CTX	context;
1060
+
1061
+	SHA384_Init(&context);
1062
+	SHA384_Update(&context, data, len);
1063
+	return SHA384_End(&context, digest);
1064
+}
0 1065
new file mode 100644
... ...
@@ -0,0 +1,196 @@
1
+/*
2
+ * FILE:	sha256.h
3
+ * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4
+ *
5
+ * Copyright (c) 2000-2001, Aaron D. Gifford
6
+ * All rights reserved.
7
+ *
8
+ * Redistribution and use in source and binary forms, with or without
9
+ * modification, are permitted provided that the following conditions
10
+ * are met:
11
+ * 1. Redistributions of source code must retain the above copyright
12
+ *    notice, this list of conditions and the following disclaimer.
13
+ * 2. Redistributions in binary form must reproduce the above copyright
14
+ *    notice, this list of conditions and the following disclaimer in the
15
+ *    documentation and/or other materials provided with the distribution.
16
+ * 3. Neither the name of the copyright holder nor the names of contributors
17
+ *    may be used to endorse or promote products derived from this software
18
+ *    without specific prior written permission.
19
+ *
20
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30
+ * SUCH DAMAGE.
31
+ *
32
+ * $Id: sha2.h,v 1.1 2001/11/08 00:02:01 adg Exp adg $
33
+ */
34
+
35
+#ifndef __SHA2_H__
36
+#define __SHA2_H__
37
+
38
+#ifdef __cplusplus
39
+extern "C" {
40
+#endif
41
+
42
+
43
+/*
44
+ * Import u_intXX_t size_t type definitions from system headers.  You
45
+ * may need to change this, or define these things yourself in this
46
+ * file.
47
+ */
48
+#include <sys/types.h>
49
+
50
+#ifdef SHA2_USE_INTTYPES_H
51
+
52
+#include <inttypes.h>
53
+
54
+#endif /* SHA2_USE_INTTYPES_H */
55
+
56
+
57
+/*** SHA-256/384/512 Various Length Definitions ***********************/
58
+#define SHA256_BLOCK_LENGTH		64
59
+#define SHA256_DIGEST_LENGTH		32
60
+#define SHA256_DIGEST_STRING_LENGTH	(SHA256_DIGEST_LENGTH * 2 + 1)
61
+#define SHA384_BLOCK_LENGTH		128
62
+#define SHA384_DIGEST_LENGTH		48
63
+#define SHA384_DIGEST_STRING_LENGTH	(SHA384_DIGEST_LENGTH * 2 + 1)
64
+#define SHA512_BLOCK_LENGTH		128
65
+#define SHA512_DIGEST_LENGTH		64
66
+#define SHA512_DIGEST_STRING_LENGTH	(SHA512_DIGEST_LENGTH * 2 + 1)
67
+
68
+
69
+/*** SHA-256/384/512 Context Structures *******************************/
70
+/* NOTE: If your architecture does not define either u_intXX_t types or
71
+ * uintXX_t (from inttypes.h), you may need to define things by hand
72
+ * for your system:
73
+ */
74
+#if 0
75
+typedef unsigned char u_int8_t;		/* 1-byte  (8-bits)  */
76
+typedef unsigned int u_int32_t;		/* 4-bytes (32-bits) */
77
+typedef unsigned long long u_int64_t;	/* 8-bytes (64-bits) */
78
+#endif
79
+/*
80
+ * Most BSD systems already define u_intXX_t types, as does Linux.
81
+ * Some systems, however, like Compaq's Tru64 Unix instead can use
82
+ * uintXX_t types defined by very recent ANSI C standards and included
83
+ * in the file:
84
+ *
85
+ *   #include <inttypes.h>
86
+ *
87
+ * If you choose to use <inttypes.h> then please define:
88
+ *
89
+ *   #define SHA2_USE_INTTYPES_H
90
+ *
91
+ * Or on the command line during compile:
92
+ *
93
+ *   cc -DSHA2_USE_INTTYPES_H ...
94
+ */
95
+#ifdef SHA2_USE_INTTYPES_H
96
+
97
+typedef struct _SHA256_CTX {
98
+	uint32_t	state[8];
99
+	uint64_t	bitcount;
100
+	uint8_t	buffer[SHA256_BLOCK_LENGTH];
101
+} SHA256_CTX;
102
+typedef struct _SHA512_CTX {
103
+	uint64_t	state[8];
104
+	uint64_t	bitcount[2];
105
+	uint8_t	buffer[SHA512_BLOCK_LENGTH];
106
+} SHA512_CTX;
107
+
108
+#else /* SHA2_USE_INTTYPES_H */
109
+
110
+typedef struct _SHA256_CTX {
111
+	u_int32_t	state[8];
112
+	u_int64_t	bitcount;
113
+	u_int8_t	buffer[SHA256_BLOCK_LENGTH];
114
+} SHA256_CTX;
115
+typedef struct _SHA512_CTX {
116
+	u_int64_t	state[8];
117
+	u_int64_t	bitcount[2];
118
+	u_int8_t	buffer[SHA512_BLOCK_LENGTH];
119
+} SHA512_CTX;
120
+
121
+#endif /* SHA2_USE_INTTYPES_H */
122
+
123
+typedef SHA512_CTX SHA384_CTX;
124
+
125
+
126
+/*** SHA-256/384/512 Function Prototypes ******************************/
127
+#ifndef NOPROTO
128
+#ifdef SHA2_USE_INTTYPES_H
129
+
130
+void SHA256_Init(SHA256_CTX *);
131
+void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
132
+void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
133
+char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
134
+char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
135
+
136
+void SHA384_Init(SHA384_CTX*);
137
+void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
138
+void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
139
+char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
140
+char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
141
+
142
+void SHA512_Init(SHA512_CTX*);
143
+void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
144
+void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
145
+char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
146
+char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
147
+
148
+#else /* SHA2_USE_INTTYPES_H */
149
+
150
+void SHA256_Init(SHA256_CTX *);
151
+void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
152
+void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
153
+char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
154
+char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
155
+
156
+void SHA384_Init(SHA384_CTX*);
157
+void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
158
+void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
159
+char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
160
+char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
161
+
162
+void SHA512_Init(SHA512_CTX*);
163
+void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
164
+void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
165
+char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
166
+char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
167
+
168
+#endif /* SHA2_USE_INTTYPES_H */
169
+
170
+#else /* NOPROTO */
171
+
172
+void SHA256_Init();
173
+void SHA256_Update();
174
+void SHA256_Final();
175
+char* SHA256_End();
176
+char* SHA256_Data();
177
+
178
+void SHA384_Init();
179
+void SHA384_Update();
180
+void SHA384_Final();
181
+char* SHA384_End();
182
+char* SHA384_Data();
183
+
184
+void SHA512_Init();
185
+void SHA512_Update();
186
+void SHA512_Final();
187
+char* SHA512_End();
188
+char* SHA512_Data();
189
+
190
+#endif /* NOPROTO */
191
+
192
+#ifdef	__cplusplus
193
+}
194
+#endif /* __cplusplus */
195
+
196
+#endif /* __SHA2_H__ */
0 197
new file mode 100644
... ...
@@ -0,0 +1,17 @@
1
+/*!
2
+ * \file
3
+ * \brief SIP-router core :: sha2 hash support
4
+ * \ingroup core
5
+ * Module: \ref core
6
+ */
7
+
8
+#ifndef _SHA2UTILS_H
9
+#define _SHA2UTILS_H
10
+
11
+#include "str.h"